A DISTRIBUTED ROUTING ALGORITHM FOR UNIDIRECTIONAL NETWORKS

M. Gerla, L. Kleinrock and Y. Afek

Reprinted from IEEE Global Telecommunications Conference,
GLOBECOM ’83, November 28-December 1, 1983, San Diego, CA © 1983 IEEE.

A DISTRIBUTED ROUTING ALGORITHM FOR UNIDIRECTIONAL NETWORKS

M. Gerla
L. Kleinrock
Y. Afek

Computer Science Department
University of California, Los Angeles

ABSTRACT

A unidirectional communications network is defined

10 be a distributed packet network in which some (or all) of

the links are unidirectional (instead ol bidirectional). That
is, the presence of a channel from 4 to B does not neces-
sarity imply the presence of a channel from B to 1. Exam-
ples of unidirectional networks are found in packet radio and
packel satellite environments.

Conventional. distributed routing algorithms generally
cannot be applied to unidirectional networks. In this paper
we present an efficient distributed algorithm to compute
shortest paths between two-way connecled node pairs in a
unidirectional network. As a byproduct, the algorithm builds
al each node the list ol two-way connected nodes. i.c.. nodes
for which there is a direct path to and Irom that node. The
computational overhead of this algorithm is shown to be
comparable to that of conventional, bidirectional routing
algorithms.

1. INTRODUCTION

A unidirectional communications network is defined
here (o be a packet switched network in which the communi-
cations processors are connected by unidirectional (instead of
bidirectional) channels. That is, the presence of a channel
from node 1 to node B does not necessarily imply the pres-
ence of another channel in the opposite direction. Using
communications systems terminology, all channels are sim-
plex channels (as opposed 1o duplex channels). Note that
bidirectional channels are permitted and will be implemented
by two simplex channels in opposite directions.

Most of the protocol development work in the past
has been devoted to bidirectional communications networks.
Yel, some network environments can be more properly
modeled with unidirectional networks. For example, in

packet radio networks it often happens that, because ol

transmission power and antenna gain imbalance, the ‘‘hear-
ing”” matrix is not symmetric (see fig 1) [KAHN 78).

Another cause of asymmeltry in radio networks using
frequency diversity (i.e., different frequencies at different
repeaters) is the dependency of signal attenuation on fre-
quency due to atmospheric conditions and multipath interfer-
ence. Thus, the channel from node 4 to node B (on one

Figure 1. Non symmetric hearing configuration in a
Packet Radio system

frequency) may be temporarily cut off. while the 8 to 1
channel is operative (on another frequency).

Other examples of unidirectional networks are packet
radio networks used in a hostile environment. where selee-
tive unidirectionality may be chosen to prevent the enemy
from tracking the geographical location of some of the Packet
Radio Units: and mixed terrestrial and satcllite networks in
which all the nodes can receive (rom the satellite. but only a
few can also transmit 1o it.

Networks in which some or all the links arc unidirec-
tional require different protocols than bidirectional networks.
For example, the link level protocol on a unidirectional link
provides error detection {(or. at most forward crror corree-
lion), but not error recovery via retransmission [CARL 80].
Thus, full error protection must be implemented at the tran-
sport level (i.e. 1SO level 4) [ZIMM 80]. At the network
layer, a special routing algorithm must be developed to
account for the fact that the path from 1 to B is generally
different from the B to 4 path, and for the lact that routing
updates can be transmitled only 10 “*downstream™ neighbors.

In this paper we propose a distributed algorithm for
the computation ol minimum hop routes in a unidirectional
network. As a byproduct, the algorithm provides at each

19.3.1

654 83CH1956-2/83/0000-0654 $1.00 © 1983 IEEE

node, say, r. a list of nodes with which v is two-way con-
nected, that is, with which v has both a directed path 10 and
a directed path from itself. The knowledge of two-way con-
nectivity is essential 1o determine whether two-way commun-
ication is possible with a remote node.

The proposed algorithm is a fully distributed algo-
rithm in which every node participates in the routing compu-
ltation and periodically broadcasts its routing and distance
information to its immediate neighbors. A node is not
required to store the full topology map in its memory - it
only needs to store routing and distance tables. In this
respect the algorithm is reminiscent of the “‘old”> ARPANET
routing algorithm [McQU 72].

Other distributed approaches could be proposed to
solve the routing problem in unidirectional networks. In par-
ticutar, each node could be required to broadcast its local
“inward”™’ connectivity (i.e., the ID's of the neighbors from
which it can hear) to the entire network, using a flooding
algorithm. Each node then constructs a complete topological
map of the network based on the information received rom
all other nodes and computes shortest routes accordingly.
This approach would be very similar 10 the ‘‘new”
ARPANET algorithm described in [McQU 80}. We chose
not to follow this approach for a number of reasons. First,
the flooding procedure is complicated to implement: in order
1o detect (and discard) duplicales each node must remember
packet ID’s for the packet lifetime. Secondly, the storage
required to store the entire topology may be excessive il the
network s large. Finally, an intruder could easily learn the
entire network topology by eavesdropping - a very undesir-
able property in hostile environments.

2. PROBLEM STATEMENT

The unidirectional network routing problem can be
stated as follows:

In a network with unidirectional links design a distributed
algorithm which:

(a) constructs at each node a table of all nodes with
which two-way communication is possible.

(b) computes the minimum hop distance and the best
route to such nodes.

(¢) is robust to link and node failures

NVoie: we assume a flooding approach {(as in the “‘new’”
ARPANET routing algorithm [McQU 801) is not permitted
because of the above mentioned limitations (namely. cach
node must remember packet ID’s for a while: high storage
overhead is involved: and. the entire network topology can
be easily discovered by an intruder).

3. SOLUTION APPROACH

Let the upsiream neighbors (or. up-neighbors for
short) of node / be the nodes which have directed links to
node /. Likewise, down-neighbors are the nodes to which «

is directly connected In the exampie in Figure 2, nodes 2 and
3 are upstream neighbors of node |; node 4 is the down-
neighbor of 1.

Figure 2. Upstream neighbors

The proposed approach consists of two phases, as fol-

lows:

° First, we develop & mechanism that permits each
node to identify which up-neighbors it can talk back
to, and along which path. In the example in Fig. 2,
node 1 finds out that it can talk back o 2 via 4. This
mechanism is described in Step | below.

® Next, we use the standard min hop routing algorithm

[GERL 81] in which each node broadcasts lo ils up-
neighbors its min hop estimates to all 2-way con-
nected destinations. This procedure is described in
Step 2 and Step 3 below.

4. ALGORITHM
Srep |

Each node v builds the inbound shortest tree, i.e., the
shortest tree pointing to il as the root. This tree contains the
shortest, directed path from each node in the network 1o v.
In the shortest path computation. the length of each directed
link is assumed to be unity. The tree thus includes all the
nodes which have a directed path to v.

The inbound shortest tree is maintained at each node
as a ‘“parent tree”” [KNUT 68]. That is, a vector P of size
N (N = number of nodes) is kept at each node. where P(/)
is the ID of the *‘parent™ of 1 in the inbound tree of v. In
addition to the parent 1D, for each node, the shortest dis-
tance D(:) from / to the rool (along the shortest path) is
also stored, as is the ID link /. (/) from / 1o the parent. It is
assumed that each node labels its outlgoing links sequentially.

Parent, Distance and Link ID information are kept in
the PDL Table. Figure 3 shows an example of PDL Table
computed at node 1. The ‘‘thick’ links define the inbound
shortest tree into node |.

The PDL table is constructed using a distributed algo-
rithm as follows:

(a) Periodically (but asynchronously) each node (say node
i) transmits on each of its outgoing links the PDL

19.3.2

655

AT NODE 1:

P D L
11o0!lojo0
2017111
3/ 2 2] 2
ai 212011
S 11| 1]

Figure 3. PDL Table

table. Before transmission, the outgoing link 1D is
entered in the link field for + in the PDL 1able.
Namely if the outgoing link p is chosen. the PDL
lable is set as follows:

L) —p

(b) Upon receiving (rom each up-neighbor 4 the PDL table
(with entries for a generic node s denoted P, (s),
D (s) and L, (s)) node : updates its PDL table as
follows:

D(s) = min [D, (s) + 1], over all neighbors A
LGy — L, *(s),

where &* is the neighbor yielding the minimum
distance. Ties are resolved by choosing the smal-
lest * i.e., the neighbor with the smallest ID.

llﬂ(s) if s = k*
PO =i irs—xe

(c) Initially, node / sets its PDL table as follows
P(i) = D() ~— L(i)~—0

D(s) ~— oo fors = |

The Step 1 procedure converges yielding the inbound
shortest path at each node. In fact, if the shortest distance
from node s to node / is #, node ; will have the correct
entry in the PDL table after » updates. Thus, the entire
Step 1 phase converges in ¢ update periods where d is the
network diameter. Convergence and overhead issues will be
discussed in more detail in Sections 5 and 7.

The PDL table has the following practical significance.
At steady state, each node knows that it can hear from all
nodes whose distance is N, where N is the total number
of nodes in the network. It cannot hear from nodes at dis-
tance > N. In fact, the distance to the latter set of nodes is
always infinity at steady state.

Step 2
After receiving the PDL table from up-neighbor &,

and using such a table to update its own PDL table, node i
proceeds to inspect D, (/).

2 SENDS TO 1

THE POL

TABLE BELOW:

P D L

11631

OO OMnnE
3r2(1]1

1 41 21 11} 2

S

CYCLE FROM 1 THROUGH 2: (5,4,2,1)
LINK ID'S: (1,1,2,1)

Figure 4. Path tracing to up-neighbors

If D,(;} < N, node i concludes that it has a directed path to
k, i.e., k is a 2-way up-neighbor. Node / then generates and
stores the shortest cycle through k& by simply tracing the
parents through the PDL table received from k4. In the
Example in Figure 4 node 1 has just received the PDL table
from node 2. It then checks the vector P and determines
that the shortest cycle through to 2 is (5, 4, 2). At the same
time it determines (from vector L) the sequence of link ID’s
(in this case (1, 1, 2, 1)) associated with the cycle.

The path so traced allows node i to send messages to
each 2-way up neighbor using a *‘path driven® routing pro-
cedure. That is, node / stamps in the packet header the
sequence of link IDs which defines the cycle and transmits
the packet on the first link in the sequence. The second
node on the path will forward the packet on the second link,
and so on until the packet reaches its destination. From the
last entry in the header, the destination extracts the ID of its
outgoing link pointing to the source node. This capability to
communicate with up-neighbors is exploited in Step 3.

Step 3

Once each node has established a path to its 2-way
upstream neighbors, the equivalent of the ‘‘old” ARPA
routing algorithm can be carried out in the unidirectional net-
work. Namely, Step 3 computes routing and hop vectors by
mean of a distributed procedure in which every node updates
its tables using the information received from the up-
neighbors, and broadcasts its tables to the down-neighbors.

At each node, in addition to the PDL table, a routing
vector (R-vector) and a hop vector (H-vector) are main-
tained. The R-vector stores the ID of the outgoing link on
the shortest path to each 2-way connected destination. The
H -vector stores the minimum hop distance to each such des-
tination (see Figure 5 for an example). Note that H < N
implies that the destination is 2-way reachable, that is, there
is a path from and a (generally different) path to that destina-
tion. If the destination is unreachable, its corresponding
value of H is infinity .

The R and H vectors are computed using the distri-
buted algorithm outlined below:

19.3.3

656

R H
1100
2] 1 1
3| 1 2
4| — | oo
5 1 3
R-H TABLE AT
NODE 1

Figure 5. R and H vectors

(a) Periodically each node sends to its 2-way up-neighbors
its H-vector. The H-vector is delivered along the
path computed in Step 2 above using a “*path driven™
routing procedure. A special flag is set in the header
to request that intermediate nodes use the path
driven (rather than the destination driven) routing
procedure. Note that at steady state path driven rout-
ing and destination driven routing coincide. During
initialization, however, destination driven routing is
not feasible since the R-vector has not been com-
puted yet.

(b) Upon receiving all down-neighbor H-vectors, node i
updates its H and R vectors as follows:
H(i) —0
For all s#/ do:

H(s) — min [H,(s) + 1], over all neighbors k
R(s) — Link(i — k%)

where k* is the down-neighbor yielding minimum hop dis-
tance, and Link (i1 k®) is the ID of the outgoing link to
k*. Recall that this link 1D is obtained from the last entry of
the header of the ‘*path driven’ update packet sent by A *.

(c) Initially, the H-vector for node / is defined as follows:
H(s) = o0 fors # ;

H(i)=0

R is set to arbitrary values.

The procedure converges since a node learns the
correct distance (say #) to'a 2-way destination in » update
periods. Convergence is discussed in more detail in Section
5.

At steady state all the nodes with hop distance
H(s) = oo are not 2-way connected to node /. The remain-
ing nodes are two-way connected. For the latter,
H(s) < N, and the R-vector indicates the shortest path to
them.

5. CONVERGENCE AND ADAPTIVITY TO FAILURES

The algorithm adjusts automatically (without operator
intervention) to link and node failures and to the insertion of

new nodes/links in the topology. Here we prove that the
correct distances and routes to the two-way connected nodes
are re-established in no more than 24 update periods after
the occurrence of the topological change, where d is the net-
work diameter. This also proves convergence at network ini-
tialization, since initialization can be viewed as a special case
of network topology change. If a node becomes {(two-way)
disconnected because of a change, this condition is detected
in no more than 2N updates, where N = total number of
nodes in the network.

Immediately following a topological change, some of
the entries in the PDL and routing tables are incorrect. To
prove convergence after a topology change, it suffices to
show that the algorithm converges to the correct solution
regardiess of the initial table values.

We first consider the convergence of the Step | pro-
cedure, that is, the inbound shortest tree computation. We
assume that initially (at iteration 0) each node /i has an arbi-
trary estimate H'(s) of the length of the shortest directed
path from node s to itself. Obviously, H’(s) = 0. It is also
reasonable to assume that H'(s)2> | for i # 5. For a node
v # s the estimate H(s) at iteration n of Step | algorithm
is simply given by the minimum over the neighbors’ esti-
mates at iteration »# - 1, plus one. Applying this property
recursively, we find:

M ‘ ! !
mlln ‘H,(s) sy, for n<h
1€

,'
H(s) = i
]

€l

!)
min imin iH,"(.s‘) +oa|, h ‘ forn 2 h
! f
|

where:

! = set on nodes having a directed path of length »
(not necessarily the shortest path) to node v

i = length of shortest directed path from s to v
(/1 = oo, if there is no path from s to v).
Note that the term / in the r.h.s. of the above expression is
due to the propagation of the estimate H’(s) =0 along the
shortest path from s to v. This propagation requires exactly
I iterations.

From the above expression it is now clear that
H!(s) = h (i.e., the estimate at node v is correct) in at most
It iterations. In fact H'(s) + n > h for n > h, for all iel,
since H'(s) => 0. Recalling that i =< d by definition, the
Step 1 procedure converges for the entire network in at most
d iterations after the topological change.

If h =00 (ie.. there is no path from s to v), v
detects this condition by verifying that its estimate
H.(s) > N after N iterations.

It can be easily verified that the convergence of the
shortest outgoing tree computation in Step 3 satisfies the
same properties as the inbound tree computation. Thus, we
conclude that the correct routing tables are re-established
within 24 iterations after the topological change. If the
change has caused a two-way disconnection, this fact is
detected in no more than 2N iterations.

19.34

657

6. ROUTING OPERATION

Two distinct routing procedures are implemented in
the network. namely: path driven routing and destination
driven routing

Path driven routing is used exclusively to send the #
vector 10 an up-neighbor as explained in Section 4, Step 2.
The originating node turns on the path routing flag and
stamps the sequence of intermediate links in the header.
The last link in the sequence is the link from the up-
neighbor to the originating node itself. 1t is used by the up-
neighbor to update its R vector. as explained in Section 4.
Step 3.

Destination driven routing is used for all other pack-
ets (including data packets). Each node. upon receiving a
packet directed to destination s. will test to see if
H(s) < N, in which case the packet is forwarded to link
R (s). otherwise, it is dropped.

7. OVERHEAD CONSIDERATIONS

The CPU processing cost of the unidirectional routing
algorithm is approximately 2.5 times the cost of the bidirec-
tional algorithm. Instead of processing two vectors (R and
H) per update period. we process five (R, H. P. D and L),

As discussed in Section S, the algorithm converges in
at most 2« update periods, where « is the network diameter.
In fact, it takes ¢ update periods 10 compute the PDL tables,
and another « update periods (in the worst case) 1o compute
the RH tables after the PDL tables have been computed. We
assume that the update interval is larger than the time
required to ship a set of RH tables from a node to its up-
neighbor. In comparison, the bidirectional algorithm con-
verges in d steps.

The line overhead can be measured in terms of mes-
sages exchanged during an update period. In the following
we assume error free channels, i.e.. no retransmissions. We
have |£| PDL messages, where £ is the set of edges. and
(b — 1) |E'| RH messages, where £’ is the set of edges join-
ing (wo-way connected neighbors (i.e., the edges in the
strongly connected subgraphs) and & is the average length of
the shortest cvcles through the edges of £, ie., the cycles
obtained by constructing for each edge in £' the shortest
cycle through it. The worst case is (among the strongly con-
nected networks) the .loop network. where |
=|Eland b = n. The best case (among the strongly con-
nected networks) is the bidirectional network, where |£]
=|E| and b = 2. Thus, for bidirectional networks the line
overhead caused by the unidirectional algorithm is only twice
the overhead of the bidirectional algorithm.

8. CONCLUSION

We have presented a distributed algorithm for the
computation of two-way connectivity and shortest paths in a
unidirectional communications network. The unidirectional
algorithm is robust to failures and, more generally, to topo-
logical changes. It is efficient in terms of memory, line traffic

and processing overhead. Moreover, when the unidirectional
algorithm is applied to a bidirectional network, it converges
in the same number of sieps as the bidirectional algorithm
and produces only twice the overhead of the latter. Thus,
the unidirectional algorithm can be efficiently applied to net-
works with a mix of unidirectional and bidirectional channels.

Several extensions o the basic algorithm are possible.
Table updating. for example. can be carried out in an incre-
mental fashion as soon as a PDL or H vector is received.
rather than waiting until all the vectors have been received
from all neighbors. The algorithm can also be applied to uni-
directional packet radio networks. Some modifications, how-
ever, are required since the present version assumes point-
lo-point channels between nodes. while in a radio network a
node broadcasts each message to all the down-neighbors. It
is also possible to upply the algorithm to more general link
cost functions and thus solve more general problems than
hop minimization. In particular. work is now under way to
solve the nunimum delay routing problem in a unidirectional
network using a modification of our basic algorithm.

REFERENCES

[CARL 80] Carlson. D. E., “Bit-Oriented Data Link
Control Procedures,”” 1EEE Traunsactions on
Communication, April 1980, pp. 455-467.
[GERL 81] Gerla. M., "*Routing and Flow Control.”” in
Protocols and Techiigues for Data Commni-
cations Nemwvorks, F. F. Kuo, Editor, Pren-
tice Hall, 1981.
[KAHN 78] Kahn, R. E. et al, “*Advances in Packet
Radio Technology.™ [EEE Proceedings,
Nov. 1978, pp. 1468-1496.
[KNUT 68] Knuth, D. E., The Art of Compurer Program-
ming, Volume 1-Fundamental — Algorithms.
Addison Wesley. Reading, MA, 1968.
(McQU 72] McQuillan, J. et al, “‘Improvements in the
Design and Performance of ARPANET.”
Fall Joimt Conference Proceedings, Fall 1972.
[McQU 80] McQuillan, J. et al, “The New Routing
Algorithm for the ARPANET." [EEE
Transactions on Comnumnication, May 1980.
[ZIMM 80} Zimmermann, H., “OSI Reference
Model. [EEE Transactions on Conmumunica-
tion, April 1980, pp 425-432.

This research was support by DARPA contract MDA 903-
82-C-0064.

19.3.5

658

